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3-1 INTRODUCTION

Variations in soil properties tend to be correlated over space—both ver-
tically and horizontally. That is, two values taken close together tend to
be more alike than two samples far apart. Most often, the classical ap-
proach in the field is to group soils together in like units or lay out small
plots and assume variability within the plots or units is purely random.
Conceptually, geostatistics offers an alternative approach in that spatial
correlations are quantified. Estimates for a property at an unsampled
location will be principally determined by measurements made close by,
rather than by assuming a class (or plot) average.

Historically, the methodology for geostatistics began in mining en-
gineering for assessment of ore bodies by D. G. Krige, for whom “kriging”
is named. Matheron (1973) provided a sound theoretical basis by the
formation of random functions. The approach is obviously not a panacea;
nevertheless, some very difficult concepts are addressed. For example,
spatial and inter-variable correlation is quantified, optimum interpolation
schemes are designed, the scale of the sample is considered, and samples
for different support volumes can be included. Additionally, new sam-
pling locations can be defined in order to best improve estimates for a
total population or location. When sampling locations are far apart, the
approach reduces to classical random fields.

Dimensionally, applications of geostatistics could be for distances of
a few molecules or kilometers. Methods can be used to analyze any num-
ber of soil properties (physical, chemical, biological) and can be extended
to include plant response and crop yields. The development of the tech-
niques was for application to very practical problems—e.g., optimizing
the selection of blocks of ore to be processed on a sliding economic scale
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according to the market price of the end product. So far, applications to
soil problems are somewhat embryonic, with versatility not yet fully
exploited. Obvious choices include interpolation for preparing maps, for
either transient or invariant properties. Also, sampling to attain a given
precision or locating new sampling points is a logical choice. The theory
for conditional simulation has not been applied to any extent and neither
have the interrelationships of correlated properties.

A comprehensive treatment of the subject is by Journel and Huij-
bregts (1978). Other readily available texts are by Clark (1979), David
(1977) and Rendu (1978). In addition, there has been an explosion of
articles in soil science and hydrology journals within the past few years.

3-2 QUANTIFICATION OF SPATIAL INTERDEPENDENCE

Spatial variations with interdependence are commonly described with
a correlogram or a variogram. In either case, we consider a set of values
Z(xy), Z(x3), ..., Z(x,) at x;, X». ..., X, where each location defines a
point in 1-, 2-, or 3-dimensional space. It is not a requirement that the
value be for an exact point, but rather that each value is for a defined
support volume which is centered at x. For the correlogram p(/) (which
we will define shortly), strong stationarity is required, that is
Strong stationarity (stationarity of order 2)
1. E[Z(x)] exists and is equal to the same constant value for all x.
2. The covariance exists and is a unique function of separation distance
h.
A weaker assumption is sufficient for the variogram function v(%) to
be defined, namely
Weak stationarity (the intrinsic hypothesis)
1. E[Z(x)] exists as above
2. For all vectors / the variance of Z(x + k) — Z(x) is defined and is
a unique function of A.
A system which satisfies the strong stationarity requirements also
satisfies the intrinsic hypothesis, but the converse is not true:

3-2.1 Correlograms
The correlogram p(%) of the regionalized variable Z is defined by
p(h) = Cov[Z(x),Z(x + h)}/o? (1]

The covariance “Cov” is for any two values of Z at a distance / apart
and ¢? is the variance of Z. Thus, the correlogram is a series of correlations
for a common variable where each couple is separated by distance 4. In
general, x and /4 are vector quantities and p will depend on the direction
as well as the magnitude of 4. The correlogram can have possible values
from —1 to 1 just as can an ordinary correlation coefficient.



GEOSTATISTICAL METHODS 55

Fig. 3-1. Idealized correlograms: A is well-behaved and decreases monotonically; B is for
independent or random values: and C is for a cyclical system.

Some “typical” correlograms are shown in Fig. 3-1. In Fig. 3-1A the
maximum value of p(%) is at # = 0 for which Eq. [1] trivially is 1. As £
increases, the covariance decreases gradually until eventually, for large
distances, p is zero and no correlation or spatial dependence exists. Thus,
samples close together are alike; samples somewhat separated are less
alike; and samples remote from each other are not correlated at all.

Figure 3-1B is for a variable which is not correlated over space. The
value p(0) is 1 as before, but for all other points p(#%) is zero, indicating
the results are independent of separation distance. This is a purely ran-
dom system. Fig. 3-1C shows results for a system showing a cyclical
effect. As the distance / increases, the correlogram becomes alternatively
positive and negative, and at large distances eventually approaches zero.
Physical systems which may exhibit such a correlogram include sediment
deposits for periodic flooding or compacted-noncompacted patterns due
to wheel traffic in a row crop.

To estimate the correlogram function, let us assume x(%) is the num-
ber of pairs of sample points a distance 4 apart. When dealing with a
one-dimensional transect, perhaps all pairs of points will be in discrete
classes; however, in general, a class size would be defined and n(#) would
refer to all pairs of points within that class. The sample covariance func-
tion is

n(h)
C(h)={-n(—h)_l—_f}z [Z(x)-Z][Z(x+ W —-Z] |2

i=1
and the sample correlogram is
rh) = C(h)/s* [3]

with Z and s? as estimates of the mean and variance. Ideally, the number
of data pairs used would be very large for each value of 4, but in practice
this is normally not the case, especially for extremely small and extremely
large h. Following is an example illustrating a sample correlogram.

3-2.1.1 EXAMPLE 1. A SAMPLE CORRELOGRAM FOR A 100-POINT
TRANSECT OF 1.5 MPa (15-BAR) WATER VALUES.

Gajem (1980) and Gajem et al. (1981) reported values for the water
retained in soil samples collected at the 50-cm depth of a Pima clay loam
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Table 3-1. Sequence of 100 values for percent water (g/g) retained at 1.5 MPa
(15 bars)t (after Gajem, 1980).

16.1 18.0 16.7 19.7 15.3 15.4 15.2 14.7
17.0 16.9 16.8 18.4 17.7 18.5 18.3 18.4
17.5 20.9 15.9 19.7 16.4 17.7 17.6 17.1
18.9 18.3 17.9 19.9 18.7 17.8 20.4 18.3
17.5 17.7 19.6 16.9 17.0 17.3 17.2 18.1
15.7 15.8 17.8 17.3 17.2 16.7 16.9 16.0
17.3 18.5 17.7 17.6 18.0 15.9 13.9 19.5
17.1 20.0 19.9 18.8 19.4 16.9 21.2 19.5
16.5 16.8 19.3 16.5 16.1 16.0 16.4 16.6
14.0 16.9 16.3 16.9 17.6 17.3 17.7 17.9
18.7 19.9 23.1 20.9 20.4 24.8 20.3 21.4
21.4 21.2 21.6 21.7 22.3 20.9 19.8 20.8
20.8 21.4 21.2 22.6

T Samples were at 50-cm depth, 20 cm apart, on Pima clay loam. The sequence goes
from left to right.

(fine silty, mixed thermic family of Typic Torrifluvents). In Table 3-1
are 100 values of water content at 15-bar suctions. The 100 soil samples
were collected on a 20-cm spacing along a 2000-cm transect with a 7.5-
cm diameter bucket auger. The depth increment was 40 to 60 cm; the
experimental mean and standard deviations were 18.3 and 2.1.

For n points equally spaced at A4, Eq. [2] may equivalently be written
as

(n — k) 2ZZ .y — ZZZZ; 44
G =)

C (kAh) = [4]

where Z, = Z(iAh) and the summations are taken from ;i = 1 ton — k.
If we choose for example Row 5 of Table 3-1 and take n» = 8 and
k = 1, the corresponding sums in Eq. [4] are

7 7
Sz=1232 Y2z, =1238

i=1 i=1

:
S Z,Z,,, =2178.19

i=1
Therefore the sample covariance for 20 cm (kK = 1 and A# = 20) is
C(20) = —4.83/42 = —0.115.

The corresponding estimate of the sample autocorrelation 1 for this row
is

n20) = C(20)/(s*)* = —0.151

with s* = 0.873 based on the eight values. Similarly for 40 cm (k = 2)
and the same row:
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6
S Z, = 106.0

i=1

resulting in

6
S Z,,,=106.1

i=1

6
S 7,7, = 187323

Jii—

1

C(40) = —7.22/30 = —0.241

n40) = —0.241/(0.873)> = —0.316

As demonstrated, the sample values are erratic for small series. There is
no exact minimum number of points necessary for estimating (%), but
generally 100 points or so will suffice.

Table 3-2 shows values of r{#) for # = 20 to 500 cm. The value 1.0
at £ = 0 is included for completeness. Values are also plotted as Fig. 3—
2A. The r(h) values begin at about 0.6 and gradually decrease towards
zero at about 250 cm. The estimated values are small negative values for
A = 300 to 480 cm, but can be interpreted as insignificant correlations.
Fig. 3-2 compares well with the idealized Type A of Fig. 3-1, with the
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Table 3-2. Autocorrelation values for moisture content values of Table 3-1.

Lag h r(h) Lag h r(h)
0 cm cm
0 0 1.00 13 260 0.01
1 20 0.58 14 280 0.06
2 40 0.61 15 300 —0.07
3 60 0.58 16 320 0.00
4 80 0.49 17 340 -0.11
5 100 0.45 18 360 —-0.07
6 120 0.38 19 380 -0.08
i 140 0.37 20 400 -0.12
8 160 0.28 21 420 -0.10
9 180 0.17 22 440 -0.07
10 200 0.11 23 460 -0.04
11 220 0.12 24 480 -0.04
12 240 0.01 25 500 0.06
10 : . ..."..o
~5F ‘e A = B
5 o L " ®
E z < 5
= : -..
SRS AsaE: o
O 2 4 2 4
h (m) h'(m)

Fig. 3-2. (A) Sample correlogram and (B) variogram for the experimental values of Table

3-1.
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exception that the values for small distance do not approach 1 but rather
0.6. This is not surprising, in view of the measurement error involved.
On split samples from the same general area, the estimated standard
deviation was determined to be approximately 0.009 (g/g) water, which
would be about 45% of the estimate of the standard deviation. This will
be addressed in more detail later with Example 2.

3-2.2 Variograms
The variogram +(4) is defined as

v(h) = (1/2) Var[Z(x) — Z(x + h)] [5]
with “Var” the variance of the argument. As for the correlogram, x
and £ are, in general, vectors. For 2 or 3 dimensions, both (%) and r(#)
can be directionally dependent. Under the zero drift assumption

E[Z(x + h)] = E[Z(x)], and Eq. [5] is equivalent to
v(h) = E[Z(x + h) — Z(x)]*. [6]

An estimate of vy is v* given by

v~ 75

with n(h) the number of pairs separated by a distance 4.
If the strong stationarity conditions are met, then both (%) and (%)
exist and Eq. [1] and [6] may be used to show that

P A A b [7]

n(h)
i=1

v(h) = ¢ [1 — p(h)], (strong stationarity) [8]

Examples of (%) are given in Fig. 3-3. Fig. 3-3A shows a typical linear
variogram starting at v(0) = 0 and reaching a maximum or “sill” value
v¥(h) = C for h = a. The value 2 = a is called the range and is the
maximum separation distance for which sample pairs remain correlated.
In some cases, y(#) will remain nonzero as # approaches zero, as shown
in Fig. 3-3B. This limiting value of v = Cj is called the nugget, so named
because of the analogy in mining where a pure metal nugget exists and
at any finite distance away a much lower concentration is found. For
linear models having a sill, y(#) is

v(h) = Cy + C(h/a), h<a
—EC ERRE] el [9]

Another useful model is the spherical model illustrated by Fig. 3-3C and
given by
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A B
Y = ety R
Co
a—i_| o 1
h h
C D
Y Y
C+C,
a— JL
h h

Fig. 3-3. Idealized variograms; A is a linear model with range a and sill C; B is a linear
model with range ¢, sill C and nugget C;; C is a spherical model with range a; and D is
a linear model without a sill.

v(h)= Co + C[(3/2)Wa) — (1/2(h/a))], O<h<a
=G+ G, h=a [10]

where, as before, C,, C, + C, and a are the nugget, sill, and range,
respectively.

The preceding examples of variograms assume that y(4) reaches a
constant maximum value for # large. Such is not always the case. Figure
3-3D is for such a system and shows (/) continuing to increase with 4,
at least on the scale over which the figure is drawn. For such a system,
the intrinsic hypothesis is satisfied, but the strong stationarity conditions
are not met. Consequently there can be no correlogram, as the variance
is unbounded. However, the variogram function remains defined and is
of value.

The choice of valid variogram models is restricted such that the
negative of y(h) is a positive-definite function (Journel and Huijbregts,
1978; Armstrong and Jabin, 1981). It is best to use models known to
behave properly. When a sill exists, these include a spherical model, an
exponential model y(h) = 1 — exp(—#/a), and a Guassian model v(/4)
= 1 — exp(—#H?/a®). When a sill does not exist, included are a power
model v(h) = A= (0 < « < 2) and a logarithmic model v(#) = log 4.
Fortunately, linear combinations of the above models are also acceptable.
The linear model with a finite sill of Eq. [9] is not a valid variogram in
the true sense, and when applied can only be used with confidence in
relating points within the range.

Spatial dependence may depend on separation distance only or on
both distance and direction. If the variogram is a function of distance
only, it is called isotropic; otherwise, anisotropic. All the models described
above are isotropic.

The choice of the model used to approximate the sample variogram
15 often somewhat subjective. No fool-proof procedure exists for best-
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fitting all situations. Some guidelines however are to (i) use a valid func-
tional form (at least within the range of application), (ii) lend more cred-
ibility to points with large numbers of pairs n(4) in the determination,
and (iii) pay more attention to short distances. As the behavior at short
distances is critical, automatic curve fitting based on minimization of
sums of squares of errors in general is not appropriate. The adequacy of
a given variogram model may, to some extent, be judged by jack-knifing,
to be discussed later.

3-2.21 EXAMPLE 2. A SAMPLE VARIOGRAM

Returning to Row 5 of Table 3-1, we now calculate a sample var-
iogram value. For equally spaced observations, Eq. [7] reduces to

y*(kAR) = (1/2n) é(zﬁ,( .25 ),

With k£ = 1 and » = 7, the result for Row 5 is

~¥(20) = (1/18)[(17.7 — 17.5) + (19.6 — 17.7)> + . ..
+ (18.1 — 17.2)] = 0.85.

Similarly with £k = 2 and n = 6, the result for v(40) is

Y¥(40) = (1/2)[(19.6 — 17.5) + (16.9 — 17.7> + ...
+ (18.1 — 17.3)] = 1.05.

Of course, for such a short series, the values are not reliable.

For the total 100-point transect of Table 3-1, sample variogram val-
ues were calculated for each lag and given as Fig. 3-2B. The value for
small distances is about 1.7 and increases to a value of about 4 at 2 =
250 cm. The values are shown up to about 500 cm or 1/4 of the total
transect, roughly the limit of reliability. The results can be reasonably
modeled by a linear or a spherical model (e.g. Fig. 3-3B, 3-3C) provided
a nugget is included. Whether a sill exists is not clear; i.e. whether the
variance would remain finite if the transect were much longer is not clear,
but if it were, then Eq. [8] would relate p(#) to v(#) and vice versa. We
can compare for small / the approximate nugget value 1.7 to the sample
(2.1)q1 — (0.6)’] = 2.8. Similarly, the largest value shown on Fig. 3-2B
is about 4 and can be compared to the sample variance (2.1)2 If (%) is
extended beyond 500 cm with this data set, it decreases and then increases
to about 6 at 1000 cm, but the results are not reliable for the longer
distances.

3-2.3 Range of Influence and Integral Scale

A natural question to ask is “What is the range of influence beyond
which values are independent of each other?”” Such a limit exists provided
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that strong stationarity conditions are satisfied, or equivalently that the
covariance function is defined for all 4. Otherwise a degree of interde-
pendence exists for all samples, although uncertainty regarding large dis-
tances can be circumvented somewhat by considering moving neighbor-
hoods only. The distance for which p(/) approaches zero in Fig. 3—-1A is
the range of influence for that example; for Fig. 3-3A, 3-3B or 3-3C, it
will be the range of the variogram.

The integral scale (cf. Lumley and Panofsky, 1964; Bakr et al., 1978;
Russo and Bresler, 1981) is defined by

e Lw o(h)dh  (1-dimensional) [1]
or
s Lw ho(h)dh]*>  (2-dimensional) . [12]

The estimated value depends to some extent on the choice of sampling
points. There is a tendency for samples over larger regions to result in
larger integral scales. Dependence of integral scale to measuring area is
a complex problem involving sample variation, scale of measurement
and stationarity.

3-2.3.1 EXAMPLE 3. REPORTED VALUES FOR RANGE OF
INFLUENCE AND INTEGRAL SCALE

Some reported values of range of influence and integral scales are
reported in Table 3-3 for a number of different parameters and locations.
The definition and method of determination of range or scale differ some-
what. Overall generalizations are difficult, but, for the most part, the larger
the area sampled, the larger is the range. For example, on the same site
Gajem et al. (1981) found ranges of 1.5, 21, and 260 m for pH values of
100-member transects spaced at 0.2, 2, and 20 m. Campbell (1978) found
random values on 8 X 20 grids at 10-m spacings, and Yost et al. (1982)
obtained values of 14.3 km on long transects in Hawaii. Interpretations
and comparisons are extremely difficult, but the overall scale of the ex-
periment is a determining factor on the ranges. Simple explanations such
as row directions, changing soil types, and topography offer a determin-
istic answer for some of the results but will not explain many others. The
question of whether homogeneity and proper stationarity exist is always
valid. Fortunately for many applications, the exact range is a moot con-
sideration, as observations at closer distances dominate the end results—
e.g. kriging estimates.

3-3 PUNCTUAL KRIGING

A primary application of geostatistics is for estimating values at lo-
cations where measurements have not been made. The most common
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Table 3-3. Reported values of integral scale or range.

Source Parameter Range or scale Site
m
Al-Sanabani Log of saturated EC >90 Tucson fine loam, Typic

(1982)

Haplargids (Arizona) 10 ha,
101 random samples, 0-30
cm in depth

Burgess and Sodium 61 Approx. 50 ha, Plas Gogerddan
Webster (Gr. Britain), 440 samples,
(1980a) 0-15 cm depth

Depth cover loam 100 Approx. 18 ha, Hole Farm (Gr.
Britain), 450 observations

Campbell (1978) Sand content 30 Ladysmith series, mesic

Pachic arguistolls (Kansas),
8 x 20 grid at 10-m spacing
in B2 horizons

Sand content 40 Pawnee series, mesic Aquic
Argiudoll (Kansas) (as above)

Soil pH Random  Pawnee and Ladysmith

Clifton and Log of transmissivity 9 600 Avra Valley (Arizona), about
Neuman (1982) 15 x 50 km, 148 wells

Folorunsoand Flux of N, and N,O <1 Yolo loam, Typic Xerorthents
Rolston (1984)  at surface (California) 100- by 100-m

area

Gajem et al. Sand content >5 Pima clay loam, Typic torriflu-
(1981) vents (Arizona), 20-m tran-

sect, 20-cm spaces, 50-cm
depth
Soil pH 1.5 Pima, as above, 4 transects
21 Pima, as above but 4 transects,
2-m spacing
260 Pima, as above, 1 transect, 20-
m spacing, 100 points
1.5 MPa 0.6 Pima, 20-cm spacing, 4 tran-
sects, each 100 points
>32 As above, 2-m spacing
150 As above, 20-m spacing
Hajrasuliha Saturated EC <80 Clay loam to loam, Haft
et al. (1980) Tappeh Plantation (Iran).
0-1m depth, 150 ha, 232
points, (Site 1)
Saturated EC >1 200 As above, 455 ha, 710 points
(Site 3)
Kachanoski Depth of A-horizon <2 Mix of Typic Haploborolls
et al. (1985) and mass of and Typic Argiborolls

A-horizon (Saskatchewan)

Liss (1983) Water-soluble organic <8 Yolo loam, Typic Xerorthents
carbon (California) 100- by 100-m

area
Soil water content of <16 As above
0-10 cm soil depth
(continued on next page)
scenario would assume that Z(x,), Z(x,), . . ., Z(x,) are known at locations

X1, X2, . . ., X, and that the variogram (or correlogram) is determined as
in the previous section. The question that remains is to estimate the
value Z* at position x,. The procedure leads to not only an optimal
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Table 3-3. Continued.

Source Parameter Range or scale Site
m
Russo and Saturated 34 Surface, Harma Red Mediter-
Bresler (1981a, conductivity ranean, Rhodoxeralf (Israel).
1981b) 30 random sites in 0.8 ha.
14 90-cm depth, as above.
Saturated water 76 Surface, as above.
content
28 90 cm, as above.
Sorptivity 37 Surface
39 90 cm, as above.
Wetting front 16-30 Simulated for above site, 1 to
12.5 h
Sisson and Steady-state 0.13 Sandy clay loam, Typic tor-
Wierenga infiltration rifluvent (New Mexico). 6.4-
(1981) by 6.4-m plot, transect of
125 contiguous 5-cm rings
van Kuilenberg Moisture supply 600 Cover sand, 30 mapping units,
et al. (1982) capacity 9 soil types including Hapla-

quods, Humaquepts, and
Psammaquents (Nether-
lands). 2 by 2 km, 1191

borings
Vauclin et al. Sand content 35 Sandy clay loam (Tunisia).
(1983) 7 x 4 grid at 10-m spacing,
20-40 cm depth
pF 2.5 25 Same
Vauclin et al. Surface soil 8-21 Yolo loam clay, Typic Xeror-
(1982) temperature thents (California). 60 and
100 m transects, 1-m spacing
Vieira et al. Steady-state 50 Yolo loam, Typic Xerorthents
(1981) infiltration (California). 565- x 160-m
area.
Wollum and Log of most probable Pocalla loamy sand, thermic
Cassel (1984) number of Arenis Plinthic (N. Carolina),
Rhizobium 1 0°, 3-m spacing
Jjaponicum >12 0°, 20-cm spacing
Random  90°, 3-m spacing
>12 90°, 20-cm spacing
Yost et al. (1982) Soil pH 14 000-32 000 Various transects on Island of

Hawaii at 1- to 2-km inter-
vals, 0-15 cm depth.
Phosphorus sorbed at 32 000 As above
0.02 mg P/L
Phosphorus sorbed at 58 000 As above
0.2 mg P/LL

solution for Z*, but also an estimate of Var(Z — Z*) which indicates the
reliability of the result.

An estimate of Z* is assumed to be a linear function (nonlinear
estimates are rarely used) of known values:

Z*(x0) = SNZ(%). [13]

i=1



64 WARRICK, MYERS, & NIELSEN

The best linear estimate is found by choosing the weight factors A; such
that the expected value and variance of Z*(x;) — Z(x,) are 0 and a
minimum, respectively, that is,

E[Z*(xo) — Z(x0)] = 0 [14]
Var[Z*(x,) — Z(x,)] = a minimum . [15]

Of course, the “true value” Z(x,) is not known. If we assume the expected
value of Z is not known, then the first condition (Eq. [14]) which guar-
antees Z¥(x;) to be an unbiased estimate results in

iN=L [16]
i=1

This leaves Var[Z*(x;) — Z(x,)] to be minimized subject to the constraim~
that the A;’s sum to 1. This is done by introducing a Lagrangian multiplier
—2u and minimizing

NaclZ () — Z(xg)] ~ 2#( A - 1). [17]
i=1
By definition and by Eq. [13], it follows that

Vaeldiog) =i Z(xg)y] = —

n
=

2 )\i)\ﬂ’ij"” 2 Z AjYOj [18]
1 /=1 j=1
where v;; is defined by

Yo T e - [19]

Substitution of the right side of Eq. [18] for the “Var” term of Eq. [17]
and taking the partial derivatives of the result with respect to each A,
gives the set of linear equations (cf. Burgess and Webster, 1980a, esp. p.
310-321):

D e S [20]
1

j=

In matrix notation, the equivalence is

A

A
J =b [21]
u

where
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Fylzyﬂ SRR BTl ]
T e A |
At o 122 22)
VPR 20T, DRG]
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and the column matrices given by (the transposes of)
A

T
} =[AN, - An] [23]
@ :

DR = o Fan v Told [24]

Thus, the solutions for the A’s and u are
l A
M

Furthermore, by Eq. [18], the minimum estimation error is

= Ab [25]

ol = bT[ A} [26]

When the nugget is nonzero, Eq. [21] may be evaluated with «;; (for
i = 1 to n) equal to the nugget or taken as 0. In either case, the weights
A; are algebraically the same. The Lagrange multiplier when +;; is taken
as 0is u + C, where C, is the nugget and u the value when v, = C..

An alternative to Eq. [21] is the *“‘covariance” form where the v,
entries are replaced by the corresponding covariance (for i and j from 1
to n). The elements a;,.; are changed from 1 to —1 fori = 1 to n. In
place of Eq. [26], the kriging variance is 0> — u — 2 \,C,;, where C,; is
the covariance corresponding to the distance between points “0”” and ;.

The most tedious calculation in the procedure is the inversion of the
matrix A. If the number of points used for the estimator is large, A and
the necessary machine operations become unwieldy. Fortunately, the
number of points necessary for the estimate may be relatively small (10
or less), as the inclusion of other weighting factors affects the results only
negligibly. Another labor-saving feature, especially for data on regular
grids, is that the A matrix is dependent upon the sampled locations only
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3-3.2 Example 5. Punctual Kriging-Two-dimensional
Suppose Z; is to be estimated from its three nearest points, using the
hypothetical values below, and with y(h) = 4h. (The grid spacing is 1
unit.)

36

Zy
3
Zy? Z,
35,4 ) ' gy Pk Ba
Z,
3

The closest three points are Z,, Z,, and Z;. If relevant values for the
variogram are

Yi2 = Y10 = 4 vi3 = 4/5; 23 = 4\/8 = 8\/2
Y20 T Y30 T 4\/2

the system of Eq. [21] becomes

Oste. fdary oRduid [ eel =landad
it TS0 sldsTmodiait 5 5.66

89 113 0 1| A, 5.66

L Sirsedciant it metUa e i T el

which has the solution

A = 0.398 A, = 0.215
A3 = 0.387 p = —0.308.

Thus, the estimated value is
3
Zk = Z AZ, =379
i=1

with a kriging variance of



68 WARRICK, MYERS, & NIELSEN

3
07 = pu+ > Ny =4.69.

i=1

Note that the diagonal entries of A are all zero for this example, as the
nugget is zero.

3-3.3 Example 6. Kriging Map for Salinity

Al-Sanabani (1982) sampled 101 random sites in a 10-ha field of a
typic haplargid soil in southern Arizona. The soil samples were from the
0-to 30-cm depth and were analyzed for the electrical conductivity (EC)
of the saturated extract. Values of EC ranged from 0.6 to 32 dS/m and
were found to follow approximately a log-normal frequency distribution
with a mean of 1.4 and variance of 0.70 for In EC.

Figure 3-4 shows the estimated variogram for the 0 to 125 m. Values
were calculated for a 10-m lag, with values also shown for 5-m lags out
to 2 = 20 m. Also shown on the figure was (%), given by the spherical
model

v(h)= 0.3 + 0.6 [1.5(/160) — 0.5(/160)*],  r < 160
= 0.9 r>160. [27]

(This model was verified to give low error between measured and kriged
estimates, as discussed later.) Directional variograms were also calcu-
lated, but little if any difference by direction was in evidence. The values
are not shown beyond 125 m, as the field was only 300 by 350 m. The
relationship shows considerable dependence out to at least 100 m.

A map was prepared using the variogram model and the 10 closest
points on a 15- by 15-m grid, using the computer algorithm of Carr et
al. (1983). Contours were drawn with the results shown in Fig. 3-5A.
Generally, a low salt region exists through the center of the field from
southwest to northeast with In EC << 1. A high salt area is to the east
with a sizeable area in excess of In EC = 2 to the east. The kriging variance
o% 1s mapped as Fig. 3-5B. The kriging variance indicates which regions

o

Y (In EC)
o

% 50 100
DISTANCE h (m)
Fig. 3-4. Variogram for EC measurements. Solid line is spherical model with nugget, range,
and sill as 0.3, 160, and 0.9, respectively. (Data from Al-Sanabi, 1982.)
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Fig. 3-5. Map of In EC for a 10-ha field (A) and the kriged “variance” (B). Hatched line
indicates interior depression.

tend to be known with the greatest confidence and is a function of the
sampling pattern and variogram model.

An indication of the quality of the kriging estimates is by a “cross-
validation” or “jack-knifing” technique. In this case one measured point
at a time is excluded and a kriged estimate is made and compared with
that measurement. Ideally, the estimates should be close to the experi-
mental points and indicate no bias. Doing this for the 101 experimental
points of the EC measurements and the variogram of Eq. [27] resulted
in an average absolute difference of 0.010 with a variance of 0.57. As the
difference is small, the model is judged to be adequate. The variance
value of 0.60 is reasonably close to the average o7 of 0.49.

3-3.4 Example 7. Efficiency of Sampling—Infiltration

Vieira et al. (1981) measured limiting infiltration rates over a 160-
by 55-m area of Yolo loam (fine-silty, mixed, nonacid, thermic Typic
Xerothents). A total of 1280 measurements were made in eight columns
of 160 measurements. Water was ponded in 46-cm diameter single rings
for 36 hours, at which time steady rates were measured.

The 1280 values were approximately normally distributed with a
mean value of 7.0 mm h~! and variance of 7.8 mm?h 2. The sample
values were highly dependent on position, as evidenced by the sample
variogram of Fig. 3-6A. They addressed the question of what minimum
number of samples would give results similar to the true 1280 (or more
measured values). For a first trial, only 16 measured values are used for
the entire field and the remaining 1264 positions was found by kriging.
The 1264 kriged values resulted in a correlation coefficient (r) of about
0.16 with the actually measured points. The correlation coefficient is
plotted by the first point on Fig. 3-6B. Repetition of the process was
done assuming 32, then 64, 128, and 256 points were known resulted in
increasing 7 values as shown in the figure. If an 2 of 0.8 between measured
and estimated values is acceptable, then 128 sampling points give similar
results to the 1280 measured values. Figure 3-6C is a scatter diagram
showing measured vs. kriged values based on 256 samples.
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Fig. 3-6. (A) Variogram, (B) correlation for data points with kriged values; and (C) scatt
diagram for 1024 data points with kriged values. (After Vieira et al., 1981.)

3-4 BLOCK KRIGING

Not only punctual (point) values are of interest, but also averag
over finite regions. The average value Z(x,) over the region Vyis

Zow) = (V) [, Z00dx

where V is centered at x,. The block V,, can be a finite line, an area
a volume, depending on whether Z is defined in one, two, or th
mensions. Block averages are smoother than point values and regi
effects are displayed more clearly.

The kriging estimate Z*(x;) is

Z el = é Nz

(The support of the sample itself could be formally introduced into
discussion, but for simplicity we assume samples are taken at
Proceeding as before, Eq. [16] is still valid (2 A, = 1) if the est
to be unbiased. Minimizing the variance, Var[Z*(x,) — Z(x)], lea
(cf. Burgess and Webster, 1980b, esp. p. 335) ¥
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A[ﬂ Lok [30]

where the column vector s is the transpose of

ST 5 [7()(15 VO)’ V(Xz, VO)a EONR) V(Xn, VO): 1] [31]

with ¥ the average of the variogram over the block, V,, i.e.
¥(xi, Vo) = (1/V5) ,,O’Y(xisx)dx [32]

The solution of the linear system of Eq. [32] is as for the punctual case.
The resulting kriging variance, however, is

5> = 2 NT(%:, Vo) + i — (1/ VO)fV Y(x, Vo) dx [33]

i=1

In general, the variance for block kriging is smaller than for point esti-
mates by an amount corresponding to the last term. This last term of
Eq. [33] is a “within block™ term analogous to “within” effects of classical
statistics. This is a special case of the extension variance of V' by a support
value v (cf. Journel and Huijbregts, 1978, p. 54):

5'_%; v 27(V,V) ¥ ?( VsV) Sy V(V,V) [34]
where

507 = Won[ [ vxodvay [35]

3-4.1. Example 8. Block Kriging for Salinity
The EC values of Example 6 were used with block kriging, resulting

in the map of Fig. 3-7A. The kriging estimates are for the center of 50-
by 50-m blocks based on the closest 10 points and were from the computer

300 v l T T T T T T T 0.21 /
L 15 ]
[ 1.0 il gehis 4

B

DISTANCE (m)
e} o)
o) 3
Q
o
>
—

e
0.1
7 o ) ;) ¥ Y BN
0 100 200 300 0 100 200 300
DISTANCE (m) DISTANCE (m)

Fig. 3-7. (A) Block kriged values for In EC, and (B) error map for the same data and
variogram as for the punctual results in Fig. 3-5A.
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code of Biafi (1982). The result is a smoothing of values compared to
punctual kriging. The high value from southwest to northeast through
the center is evident, but the boundaries are smoothed. The high value
region (In EC > 2) is reduced to a single area to the lower right. The
error map for the block kriging is given as Fig. 3-7B. The values are
much smaller than the values for punctual kriging (about 0.1, compared
to 0.4 to 0.8). This is evidence of the error reduction analogous to the
“within block” component.

3-5 SAMPLING STRATEGIES FOR SPECIFIED ESTIMATION
ERROR

Scientists almost without exception are confronted again and again
with the question of how many locations to sample and how to best
locate them. The best known relationship is that the sampling number
n necessary to be within a specified value of the population mean is

n = z2/(x — u)? (36]

where ¢ and u are the population variance and mean values, |x — ul
the allowable deviation to be attained (1 — «) (100)% of the time, and
z, the two-tailed normalized deviate (zoos = 1.96; z,, = 1.645; z,5 =
0.842). The assumptions are (i) independence of samples and (ii) » suf-
ficiently large that the “central limit theorem” applies. For application,
the best estimate of ¢ and u would be used. (For estimating confidence
limits when s2 and 7 are already specified, the appropriate Student ¢ value
is inserted for z,, but it should not be used to estimate a sampling number
required.) The problem of sampling strategies and estimation variance
has recently been addressed by Burgess et al. (1981), McBratney et al.
(1981), and McBratney and Webster (1983a).

The classical approach to reducing the sampling size required is to
logically break the area (or appropriate population) into classes. The ap-
propriate model is

where y; is the class average and ¢; is taken to be spatially uncorrelated.
The best estimate at an unvisited site is

T ¥ | n(j)

Z,=Z=[1/n()] 22, 138]

(assuming we know which class it belongs to). The estimation variance
3
o 1S
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o} = Var(Z; — Z,) = Var(Z) + Var(e)

or
o = o*> + o*/[n())] [39]

The ¢? is the within-class variance and ¢%/[n(j)] is the variance of the
class mean. By increasing n(j), better and better estimates of the class
mean are found but the estimation variance at an unvisited site can never
be less than the estimation variance o2,

The above approach implies that the initial subdivision accounts for
all spatial variations and that ¢; is purely random. In addition, it assumes
that class lines are sharp. This may be the best approach if only very
limited data are available, but leads to overly conservative estimates of
precision. An alternate is to use Eq. [13] for punctual kriging or Eq. [29]
for block kriging. Example 4 illustrates this.

3-5.1 Example 9. Sampling Error

Burgess et al. (1981) and McBratney et al. (1981) considered the
design of optimal sampling schemes using regionalized variables. Square
and triangular sampling grids are considered. The maximum distance
between an interpolated point and the nearest observation will be 0.62
for unit triangles and 1/(2)"/? = 0.71 for unit squares at x,. The maximum
estimation variance will correspond to these points. The kriged variance
at the maximum point can be calculated a priori by Eq. [26] and will
depend on (%) and the spacing. In general, the triangular (hexagonal)
geometry is more efficient (although not by much, since x; for the square
grid has four close neighbors rather than 3). The slight advantage of the
triangular pattern is largely mitigated by the simplicity of sampling on a
square grid. :

Firstly, linear variograms are considered with unit slope and nugget
of 0, 1, and 2. The estimation was by the 25 nearest neighbors (a com-
puter code OSSFIM is given by McBratney and Webster, 1981). Resulting
estimation variance as a function of sample spacing is in Fig. 3-8A. For
zero nugget (C, of Eq. [9]), the estimation variance increases from zero
for very close spacings to about 1.8 for sampling at 4 units. The dashed
lines correspond to the triangular grids and show only negligible im-
provement over the square grids. When a nugget exists, the estimation
variance is correspondingly higher and cannot be reduced below the nug-
get value.

Also, results are for maximum estimation variance for punctual krig-
ing of sodium at Plas Gogerddon. The field site is described in detail by
Burgess and Webster (1980a). The variogram is assumed isotropic and
linear up to # = 15.2 m, with v as

¥(h) = 8.7 + (1.69/15.1)h, h < 60.1. [40]
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Fig. 3-8. Estimation of variance as a function of spacing. Effects of varying nuggets are
shown in A. Sodium results at Plas Gogerddan are in B. Solid lines are for square patterns,
dashed for triangular. (After Burgess et al., 1981.)

The resulting maximum estimation variance is given as Fig. 3-8B, with
results again calculated by the nearest 25 neighbors. The value starts at
8.7 (the nugget) for very small spacings and increases with distance until
it levels off at about 60 m which was the maximum distance over which
dependence is assumed. The estimated variance overshoots the sill value
for dependent samples. This is an anomaly of the calculations, in that
25 points were chosen, giving a long-range estimation of [8.7 + (1.69/
15.1)(60.1)](1 + 1/25) = 16.0. Had more points been chosen, this would
be reduced to the sill value of about 15.5. This reiterates that for spacings
beyond the range of influence, kriging estimates reduce to the same results
as for random sampling. Several more examples, including those for block
kriging, are given in the above references.

3-6 FURTHER APPLICATIONS
3-6.1 Universal Kriging

Both the strong stationarity and intrinsic hypotheses imply an as-
sumption of zero drift, that is,

E[Z(x + h) — Z(x)] = 0 [41]

In practice this assumption is scale-related and may be satisfied by par-
titioning the region into sub-regions. In other instances there may be a
strong or pronounced drift, and Eq. [20] and [21] must be changed. Since
this drift is generally unknown it is necessary to model or estimate it.
The simplest model is given by

P

E[Z(x)] = X afi(%) [42]

i=0
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where fo.f),. . ..f, are known, linearly independent functions, but a,. . .,a,
are unknown. While knowledge of these coefficients is necessary to es-
timate the variogram, it is not necessary for kriging. The estimator

Z*(xp) = En: ANZ(x) [43]

i=1

is of the same form as Eq. [13] but Eq. [20] becomes

n P
2 Ay (x; "xj) 7 /;o H-kfk(xj) = ,xj) [44]

i=1
and Eq. [42] becomes
DAL(x) = fi(x)  j=0,...,p. [45]

The kriging variance is given by
P
UlzJK 5 ZA,‘Y(X,‘ , %) + Z P'/Jk(xo)- (46]
k=0

The u,’s are Lagrange multipliers corresponding to the p + 1 constraints
which are required to insure that the estimator is unbiased. The kriging
variance is in general larger due to the uncertainty associated with mo-
delling the drift.

The simplest choices for the drift functions are polynomials, [e.g., in
one dimension fy(x) = 1, fi(x) = x, fi(x) = X% ... ].

The difficulty in utilizing universal kriging is the circular nature of
the problem. Estimation/fitting of (%) requires the drift function, but
the coefficients in Eq. [42] can only be estimated optimally if the var-
iogram is known. Some authors have used least squares to fit the drift.
This will result in a bias in estimating the variogram. If a linear variogram
is used this bias is known. Burgess and Webster (1980b) have given an
example of universal kriging and show the computation of the bias.

Even in mining applications, universal kriging has received limited
application because of these difficulties. There are several possible so-
lutions. If the drift is at most second order, the samples are taken on a
regular grid or transect, and a linear variogram is postulated, then least
squares fitting can be used to model the drift and the bias in the variogram
compensated. If the data are in two or three dimensions, the drift may
be only in one direction and the variogram can be modeled using only
data in other directions. In this case universal kriging may be used without
difficulty. More recently a different formulation using generalized covar-
iances has been developed. As yet there are few if any examples of ap-
plications to problems in soil science. There are several computer pro-
grams commercially available such as BLUEPACK (available through
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Geomath, Inc., 4891 Independence Street, Suite 250, Wheatridge, CO
80023). The method is described in greater detail in Delfiner (1976).

3-6.2 Co-Regionalization

Kriging utilizes the spatial dependence of a particular soil character-
istic. Some attributes such as clay and wilting percentage are dependent.
This dependence can be used in estimation as well as the spatial depen-
dence. When one or more variables are estimated by a linear combination
using both the spatial and inter-variable dependence, the technique is
known as co-kriging or co-regionalization.

Co-kriging is utilized for several kinds of problems. For example,
Vauclin et al. (1983) reported available water content (AWC), pF 2.5 (pF
= log of soil matric potential as cm of water), and sand values sampled
on a regular grid at 10-m intervals. The AWC and pF 2.5 values were
then co-kriged on a 5-m grid. It is also possible to replace missing or
insufficient data for one variable by data on other variables by utilizing
the intervariable dependence. This is known as the “undersampled prob-
lem.” In both forms of co-kriging the objective is to reduce the kriging
variance.

The most compact form of the co-kriging equations is given in matrix
form. Let Z(x),. . .,Z,,(x) be the random functions representing the soil
attributes where x is a location in 1-, 2-, or 3-space. If

Zey=Zi69, .+ . Z(0 (47
and x,, ..., X, are sample locations, the estimator for Z(x) is written as
Z*(x) = le(xj)rj [48]
i
where T, . . ., T, are m X m matrices with entries N;. The N is the weight

for location i given to Z; in estimating Z,.
The system of equations used to obtain the I'/’s is given by

27(]@ ¥ xj)ri+ B = ¥(x; — Xo)
ZT,-= 1 [49]

Each ¥ is an m X m matrix whose entries are variograms (on the diagonal)
and cross-variograms. For the undersampled problem the F’s must be
modified by inserting zeros in appropriate places.

McBratney and Webster (1983b) and Vauclin et al. (1983) did not
use the matrix form, since only two variables were considered. The details
of the matrix form are found in Myers (1982, 1983).

To apply co-kriging it is necessary to model variograms for each
variable separately as well as cross-variograms for all pairs. Examples are
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found in McBratney and Burgess (1983a, 1983b) and Vauclin et al. (1983),
with theoretical results given in Myers (1982). A computer program uti-
lizing an iterative method for solving the large system of equations as
well as the undersampled option is given in Carr et al. (1983).

3-6.3 Conditional Simulation

Kriging is formulated in terms of random functions, although only
one realization of the random function is available. Often another real-
ization is sought which exhibits the spatial variability and known values
at the sample locations.

By the use of a random number generator one can generate many
values of a random variable with a desired distribution. However, for
one value of each of many dependent random variables a different tech-
nique is necessary. Generation of the set of values, one each for a set of
spatially dependent random variables, is called simulation. Conditional
simulation produces a simulation such that at the sample locations the
estimate coincides with the sample value.

Unlike some laboratory or field experiments, a new value cannot be
obtained by repeating the experiment. If the same locations are sampled
then the same results (except for instrument or analysis error) should be
obtained. Sampling new locations provides additional data on the same
realization. For another, realization simulation is necessary. Delhomme
(1979) has used conditional simulation to study the Bathonian aquifer
in France. In particular, simulated values were obtained for the log of
the transmissivity.

The spatial dispersion in soils of nutrients, water, or pollutants could
be studied by producing many simulations. Conditioning or matching
the simulation to the data at sample locations is accomplished by using
kriging. With any location x where a simulated value is to be made, then

Z(x) = ZX(x) t [Z(x) — Z*(%)]

where Z* is the kriging estimator. Moreover, the Z(x) — Z*(x) has a
mean of zero; in fact, at a sample location Z(x) — Z*(x) = 0. The
procedure then is to simulate values of Z(x) — Z*(x) (except at sample
locations) and add to Z*(x).

To produce simulations in 2- or 3-space, the turning bands method
was developed by Matheron (1973) and described in more detail in Jour-
nel and Huijbrets (1978). The simulated value at a point in 3-space is
the sum of 15 simulations on equally spaced lines. These lines are de-
termined by the edges on an iscosahedron, which provides the optimal
polygonal approximation to a sphere.

The simulations on lines are produced by a moving average as de-
scribed in Box and Jenkins (1970). It is necessary to relate covariances
in 3-space to a covariance in 1-space and then represent this covariance
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as a convolution. This decomposition is known for the standard covar-
iance models used in geostatistics. Lenton and Rodriquez-Iturbe (1977)
and Smith and Freeze (1979b) have given examples of other methods for
simulation of rainfall and groundwater flow.

3-6.4 Miscellaneous Comments and Notes

Variograms—As noted above, valid models must - QQ
definite condition. The use of an invalid model ca~ {b\\eﬂ\% K
estimated variance. The collection of valid m ® S @ g° o
nesting, that is, by using positive linear combi, "“&x‘b“ K °°e
The shape of the basic models can then be mo. 06% \0\00@9\.
nesting and hence match the sample variogram me '0'006‘665\0 %@Q
also a method for constructing an anisotropic model fre. \0‘0 ,&,‘?}’. RS
It should also be noted that replacing v by a + v or & 6\6‘\0{&“ o
the kriged values, but the kriging variance is changed ¢ & 6\6{

Unique vs. Moving Neighborhoods—The kriging es\. '&%6 &
spatial correlation in such a way that sample locations close e Q;&\’

for which the estimate is desired receive greater weights and \
away lesser weights. The sum of the weights is 1.0, but the v
not constrained to be non-negative. Thus, negative weights ca.
negative estimated values. There is no theoretical contradiction,
physical phenomena negative values are often not realistic. One so.
is to use only those locations that are close; that is, for each locatic
be estimated, a different neighborhood is used. Another advantage
using moving neighborhoods is that the coefficient matrix for the krigin
equations is much smaller. One disadvantage when contouring is that
the moving neighborhoods lead to discontinuities in the plot.

Computing—One of the advantages of kriging is its simplicity of ap-
plication. Computing sample variograms requires finding average squared
distances only, and the kriged values require solving only a linear system.
In addition to the complexities of data handling, inverting large matrices
(i.e., solving large systems) can create problems. In general, the coefficient
matrix is not positive definite when variograms are used and pivotal
methods do not work well. There are several ways to avoid this problem.
Frequently the variogram is replaced by the corresponding covariance.
This avoids all the zeros on the diagonal. Alternatively the matrix can
be partitioned; the upper left block containing the variogram values is
positive definite. Finally, iterative methods such as the projection method
are useful. A version of this method is embedded in the co-kriging pro-
gram of Carr et al. (1983). One advantage of the projection method is
that the universality conditions are checked at each iteration. The sub-
routine used to solve linear systems is a major component of any kriging
program.

Screening, Declustering and Smoothing—Because spatial correlation
is incorporated in kriging, several sample locations in close proximity
constitute related information. The weights assigned by kriging compen-



¢ NIELSEN

ard covar-
rbe (1977)
ethods for

¢ positive-
a negative
nlarged by
id models.
antially by
Nesting is
pic models.
0 effect on
yondingly.
tor utilizes
he location
10se farther
weights are
can lead to
on, but for
ne solution
location to
lvantage of
- the kriging
ring is that
t’?
licity of ap-
age squared
|ear system.
ge matrices
: coefficient
ind pivotal
is problem.
covariance.
matrix can
n values is
ion method
(riging pro-
| method is
1. The sub-
any kriging

correlation
| proximity
1g compen-

GEOSTATISTICAL METHODS 79

sate for this clustering. With this in mind, it is seen that cluster sampling
is not efficient, although there may be other factors such as screening:
locations screened by other locations will receive lesser weights. Finally
it should be noted that the kriged random function Z* is smoother than
the original function Z; that is, the variance of Z* is smaller than the
variance of Z.

3-7 DISCUSSION

Several points regarding geostatistics should be reiterated or stated

more explicitly:

1. The applications are relatively new, especially to soil science.

2. The applications are quite general in terms of processes, scale of mea-
surement, and type of application.

3. The results very often give the same answer as more conventional
statistics.

4. There are many “‘gray” areas, partially because of (1) but also because
of general uncertainty in the assumptions.

Most applications to this date emphasize mapping and contouring.
These include efforts towards general surveying as well as a number of
physical and chemical parameters. Although these are of obvious benefit,
they need not be the final product. In fact, the background of geostatistics
is heavily rooted in practical economics of mining; thus possibilities for
use in operational analysis in soil science seem feasible.

The parameters addressed have been strongly slanted towards chem-
ical and physical properties. There are no inherent reasons to eliminate
any spatially variable property—e.g., yields, plant nutrients, or microbes.
Likewise applications have been mostly for a few centimeters to kilo-
meters, but any meaningful scale can be used.

In many cases, results are trivial. In Example 2, after a lengthy anal-
ysis, the unknown value was estimated by the average of its two neigh-
bors—hardly surprising in retrospect, but pointing out that the results
should be reasonable and must be dependent on available information
and data. In general, as spacings between samples get larger, the potential
advantages of regionalized variables are less; results approach those based
on independence of samples and agree fully with other statistical ap-
proaches.

There are many “gray” areas which underscore basic uncertainties
regarding natural systems. The form of the variogram influences the anal-
ysis; yet it cannot be known with certainty, and its best approximation
cannot be given with confidence. Whether and to what degree stationarity
exists is usually not really known. In the case of universal kriging, the
relationship between estimators of the drift and bias in the results be-
comes clumsily entangled. The complications, however, are mostly a
consequence of a more detailed analysis of the system—the absolute sta-
tus, which cannot be totally established.
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The challenge then is to use geostatistics as a tool where favorable
and advantageous. Recognition of best-suited situations hopefully will
come into focus with time, experience, and further development. How
to best complement existing knowledge and techniques is a key ingre-
dient. Examples are how to best interface with existing soil survey and
descriptions, or how to best address contemporary problems such as rais-
ing or maintaining productivity, protecting the environment, or utilizing
less energy and water—all under difficult economic and/or social con-
straints.
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